National Nanotechnology Infrastructure Network

National Nanotechnology Infrastructure Network

Serving Nanoscale Science, Engineering & Technology

Quantum Espresso at NNIN

Quantum Espresso at NNIN


Quantum Espresso is an plane wave density functional code for electronic structure calculations and materials modeling at the nanoscale.  It can make use of both norm-conserving and ultrasoft pseudopotentials.

IWCE Phonon School

Tutorial Files   Handout1  Handout2

DFT Intro Part 1  

DFT Intro Part 2 





Applications :

Ground-state calculations:

    • Self-consistent total energies, forces, stresses;
    • Electronic minimization with iterative diagonalization techniques, damped-dynamics, conjugate-gradients;
    • Separable norm-conserving and ultrasoft (Vanderbilt) pseudo-potentials, PAW (Projector Augmented Waves)
    • Hubbard U (LDA+U);
    • Berry's phase polarization;
    • Spin-orbit coupling and noncollinear magnetism;
    • Maximally-localized Wannier functions.
  • Response properties (density-functional perturbation theory):
    • Phonon frequencies and eigenvectors at any wavevector;
    • Full phonon dispersions; inter-atomic force constants in real space;
    • Translational and rotational acoustic sum rules; Effective charges and dielectric tensors;
    • Electron-phonon interactions; Third-order anharmonic phonon lifetimes;
    • Infrared and (non-resonant) Raman cross-sections; EPR and NMR chemical shifts;
  • Spectroscopic properties:
    • K- and L1-edge X-ray Absorption Spectra (XAS)
  • Ab-initio molecular dynamics
    • Car-Parrinello Molecular Dynamics;
      • Microcanonical (Verlet) dynamics;
      • Isothermal (canonical) dynamics - Nose-Hoover thermostats and chains;
      • Isoenthalpic, variable cell dynamics (Parrinello-Rahman);
      • Constrained dynamics;
    • Born-Oppenheimer Molecular Dynamics;
      • Microcanonical (Verlet) dynamics;
      • Isothermal (canonical) dynamics - Anderson, Berendsen thermostats;
      • Isoenthalpic, variable cell dynamics (Parrinello-Rahman);
      • Constrained dynamics; Ensemble-DFT dynamics (for metals/fractional occupations);
  • Structural Optimization:
    • GDIIS with quasi-Newton BFGS preconditioning;
    • Damped dynamics; Ionic conjugate-gradients minimization;
    • Projected velocity Verlet;
    • Transition states and minimum energy paths:
      • Born-Oppenheimer nudged elastic band;
      • Born-Oppenheimer string dynamics;


Quantum Espresso has been developed primarily at the DEMOCRITOS National Simulation Center in Trieste, Italy.  Other partner organizations that have contributed to code development include CINECA National Supercomputing Center (Bolgna, Italy), the Ecole Polytechnique Federale de Lausanne, MIT, and Princeton University.

Key developers include:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch

Getting Started:

Relevant Research Articles and Webpages:

Questions, Comments...

Please contact:

Derek Stewart, Ph.D.
stewart (at)
Cornell Nanoscale Facility