Gold Nanostructures with Tunable Photothermal Properties for Cancer Treatment

Max Li
Biomedical Engineering, and Mathematics, Duke University

NNIN REU Site: Nano Research Facility, Washington University in St. Louis, St. Louis, MO
NNIN REU Principal Investigator: Professor Younan Xia, Biomedical Engineering, Washington University in St. Louis
NNIN REU Mentor: Dr. Yucai Wang, Department of Biomedical Engineering, Washington University in St. Louis
Contact: mzl@duke.edu, xia@biomed.wustl.edu, ywang@seas.wustl.edu

Introduction:

Gold nanoparticles (AuNPs) have a variety of properties that make them favorable for biomedical applications, including the low reactivity and low cytotoxicity intrinsic to gold [1]. Photothermal therapy is based on the tunable electromagnetic absorption characteristics of AuNPs in a phenomenon known as localized surface plasmon resonance (LSPR). The absorption peak can easily be tuned into the near-infrared (NIR) region by controlling the shape of the NP. The NIR region, covering wavelengths from 650-900 nm, is a region of low absorption for both water and hemoglobin in soft tissues, allowing for photothermal therapy to be useful in biological settings [1]. We have synthesized and compared the photothermal properties of three different types of AuNPs: nanohexapods [2], nanocages, and nanorods. By studying the photothermal properties and experimental in vitro and in vivo capabilities of these three classes of nanostructures, we gain a sense for their potential as agents for cancer treatment.

Experimental Procedure:

Nanoparticle Synthesis, Characterization, and Use in Photothermal Solution Studies. In order to take advantage of the NIR region, gold nanohexapods, nanocages, and nanorods were synthesized using the reported methods with their absorption peaks tuned to 800 nm as measured with ultraviolet-visible (UV-Vis) spectroscopy (Figure 1). Solutions of nanohexapods, nanocages, and nanorods at various concentrations were irradiated with laser at a wavelength of 808 nm and data was captured with a thermal imaging camera.

Influx and Viability Studies in vitro. Nanostructures were also prepared for application in vitro and in vivo by process of PEGylation. Melanoma cancer cells were cultured and then incubated with our three types of gold nanostructures. Experiments determined the rate of influx of gold nanoparticles into melanoma cells, as influx was halted and the gold concentration within cells determined by inductively coupled plasma mass spectrometry (ICP-MS) after various incubational time periods. In addition, experiments of viability were conducted examining the cytotoxicity of various concentrations of nanoparticles. After a 24-hour incubation period, estimates of viability were made using an MTT assay.

Photothermal Studies in vivo. Preliminary photothermal studies in vivo were conducted by directly injecting a suspension of gold nanostructures into a tumor-bearing mouse. Tests compared an injection of nanohexapods with an injection of a saline control. In addition, the tissue distribution of

Figure 1: UV-Vis spectra, TEM images, and models of gold nanohexapods (A), nanocages (B), and nanorods (C).
Our preliminary studies in vivo showed that only five minutes of laser irradiation raised the tumor temperature to over 60°C in our nanohexapod trial, while the temperature change recorded during our injection of saline was insignificant. Also, tissue distribution studies indicated that 48 h post injection, nanohexapods had the highest level of accumulation in tumor among the three types of nanoparticles at a rate of nearly 15%. While the largest proportions of nanohexapods were found in the liver and the spleen, nanoparticle accumulation in the tumor was significant and is based on the enhanced permeability and retention (EPR) effect.

Conclusions and Future Work:
Gold nanohexapods, when compared with nanorods and nanocages, were shown to have comparable or higher levels of photothermal efficiency, cellular uptake, viability, and accumulation in tumor. As such, they have great potential for use in cancer therapy. However, a large-scale method for nanohexapod synthesis still needs to be developed. In addition, a detailed investigation of the in vivo toxicity of gold nanohexapods and the photothermal efficiency of tail-vein injections would contribute greatly to our understanding of nanohexapods as photothermal agents.

Acknowledgements:
I would like to thank Professor Younan Xia for his guidance in my project and Dr. Yucai Wang for serving as my mentor throughout my research. I would also like to thank the National Science Foundation, the NNIN REU Program, the staff of Nano Research Facility (NRF) at Washington University in St. Louis, and all of the members of the Xia Research Group.

References: